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Abstract

Rotating the activation and weight matrices to reduce the influence of
outliers in large language models (LLMs) has recently attracted signifi-
cant attention, particularly in the context of model quantization. Prior
studies have shown that in low-precision quantization scenarios, such as
4-bit weights and 4-bit activations (W4A4), randomized Hadamard trans-
forms can achieve significantly higher accuracy than randomized orthog-
onal transforms. Notably, the reason behind this phenomenon remains
unknown. In this paper, we find that these transformations show substan-
tial improvement in eliminating outliers for common tokens and achieve
similar quantization error. The primary reason for the accuracy differ-
ence lies in the fact that randomized Hadamard transforms can slightly
reduce the quantization error for tokens with massive activations while
randomized orthogonal transforms increase the quantization error. Due
to the extreme rarity of these tokens and their critical impact on model
accuracy, we consider this a long-tail optimization problem, and therefore
construct a simple yet effective method: a weighted loss function. Addi-
tionally, we propose an optimization strategy for the rotation matrix that
involves alternating optimization of quantization parameters while em-
ploying orthogonal Procrustes transforms to refine the rotation matrix. This
makes the distribution of the rotated activation values more conducive to
quantization, especially for tokens with massive activations. Our method
enhances the Rotated LLMs by achieving dual free, Outlier-Free and Mas-

sive Activation-Free, dubbed as DFRot. Extensive experiments demonstrate
the effectiveness and efficiency of DFRot. By tuning the rotation matrix
using just a single sample, DFRot achieves a perplexity improvement of
0.98 and 0.95 on W4A4KV4 and W4A4KV16, respectively, for LLaMA3-
70B, a model known for its quantization challenges. Code is available at
https://github.com/JingyangXiang/DFRot.

1 Introduction

Large Language Models (LLMs) have shown exceptional abilities across numerous domains.
Cutting-edge open-source models like LLaMA (Touvron et al., 2023) and Mistral (Jiang
et al., 2023), along with proprietary LLMs such as GPT (Achiam et al., 2023) and Gem-
ini (Team et al., 2023), are now being applied in a wide range of applications, including
natural language understanding (Zellers et al., 2019; Hendrycks et al., 2020), machine transla-
tion (Zhang et al., 2023), content generation (Mo et al., 2024), recommendation systems (Wu
et al., 2023; Wang et al., 2024; 2025) and agent (Li et al., 2025).

However, the remarkable success of LLMs is largely reliant on significant computational
resources. LLMs often consist of billions of parameters, making them not only resource-
intensive to train but also challenging to deploy on devices with limited computational
capacity, such as mobile phones and edge devices. Additionally, the high memory and
processing demands not only drive up hardware costs but also significantly increase energy
consumption, leading to serious deployment concerns. To address these challenges, re-
searchers and engineers are actively exploring various model compression techniques (Fran-
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tar et al., 2022; Xiao et al., 2023; Lin et al., 2024a; Yao et al., 2022; Frantar & Alistarh, 2023;
Ashkboos et al., 2024a; Wei et al., 2024; Zhao et al., 2025). These techniques aim to reduce
the size of LLMs while maintaining their performance as effectively as possible, achieving a
balance between efficiency and accuracy.

Unfortunately, the presence of outliers in the activations (Dettmers et al., 2022; Zeng et al.,
2022) often leads to a significant reduction in model accuracy when PTQ is applied directly.
To address this problem, earlier approaches have either scaled weights and activations (Xiao
et al., 2023; Wei et al., 2023; Shao et al., 2023), shifting the quantization challenges from
activations to weights, or employed mixed-precision techniques to isolate outliers (Dettmers
et al., 2022), thereby minimizing the LLM’s quantization error.

Recent research (Ashkboos et al., 2024b) has demonstrated that rotating activations in LLMs
can effectively eliminate most outliers while preserving computational invariance, ensuring
that the LLM’s output remains identical to its original results. Moreover, the rotation
matrices can be merged into the weights, imposing no additional burden on network
inference. This innovative computational invariance (Ashkboos et al., 2024a) has garnered
significant attention from researchers.

Although rotation is widely recognized as an important method for the quantization
of LLMs, there remain many unresolved issues. For example, as shown in Table 1,
when activations are reduced to 4-bit, the reasons why randomized Hadamard trans-
forms (RH) often achieve significant improvement compared to randomized orthogonal
transforms (RO) (Ashkboos et al., 2024b; Liu et al., 2024) have not yet been fully understood.
However, while directly training rotation matrices can yield good results (Liu et al., 2024),
the training process will cause substantial computational resources and adds complexity to
the quantization process.

In this paper, we first investigate the underlying reasons why RH outperforms RO. We find
that for ordinary tokens consisting primarily of outliers (Achiam et al., 2023), both RO and
RH transformations can equally reduce quantization error when applied to these tokens. As
shown in Figure 3, in terms of quantization error, there is no substantial difference between
the two transformations. In contrast, for special tokens with massive activations (Sun et al.,
2024), using RO on these activations surprisingly leads to an increase in quantization error.
Our experiments show that this inability to efficiently manage massive activations greatly
restricts the accuracy of quantized LLMs. On the other hand, while RH performs better
than RO, it only manages to maintain or slightly reduce the quantization error for these
large activations. This observation indicates that both transformation methods struggle to
effectively manage massive activations in LLM quantization.

Building on these insights, we propose a novel optimization method to enhance the per-
formance of quantized LLMs, achieving both Outlier-Free and Massive Activation-Free, e.g.

dual free (DFRot). By treating scarce tokens with massive activations as long-tail distributed
data, we develop a simple yet effective weighted loss function. Additionally, we intro-
duce an alternating optimization approach to refine the rotation matrices and quantization
parameters, further minimizing quantization error. Extensive experiments demonstrate
the effectiveness of our proposed method. Specifically, by tuning the rotation matrix with
just a single sample, DFRot achieves a PPL improvement of 0.95 and 0.98 on W4A4KV4
and W4A4KV16 for LLaMA3-70B with WikiText-2, a model recognized for its quantization
challenges (Huang et al., 2024).

2 Related Work

2.1 Eliminating outliers via Scale Invariance

The initial idea behind suppressing outliers through scale invariance stems from the obser-
vation that weights are easier to quantize than activations, and outliers in activations often
appear in a few fixed channels Dettmers et al., 2022. Based on this, SmoothQuant (Xiao
et al., 2023) first proposes that we can offline migrate the quantization difficulty from activa-
tions to weights via scale invariance. SmoothQuant enables an INT8 quantization of both
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Figure 1: An illustration of rotational invariance in the LLaMA architecture. The rotation
matrix R1 can be integrated into the residual connection, ensuring the network retains
rotational invariance. The rotation inner the block can further reducing outliers within block.
Both of them make LLM fewer outliers and be easier to quantize. The rotation matrix R1,
RT

1 , R2, RT

2 and RT

4 can be integrated into weights. R3 and R4 need to compute online.

weights and activations for all the matrix multiplications in LLMs. Furthermore, Outlier
Suppression+ (Wei et al., 2023) proposes a fast and stable scheme to effectively calculate
scaling values, achieving a better balance in quantization burden. To reduce manual design
and further enhance quantization performance in extremely low-bit quantization, Omni-
Quant (Shao et al., 2023) introduces Learnable Weight Clipping and Learnable Equivalent
Transformation, efficiently optimizing the quantization process for both weight-only and
weight-activation quantization. In the clipping W4A8 quantization, QQQ (Zhang et al.,
2024) proposes to dynamically handle outliers through adaptive smoothing. QServe (Lin
et al., 2024b) proposes SmoothAttention to effectively mitigate the accuracy degradation
caused by 4-bit KV quantization. Both QQQ and QServe have effectively enhanced the
performance of LLMs in W4A8 quantization.

2.2 Eliminating outliers via Rotational Invariance

Although scale invariance can reduce outliers and improve quantization performance, it
merely transfers the outliers from activations to weights and has not eliminated them fun-
damentally. When the magnitude of the outliers is large, scaling struggles to achieve an
effective balance between weights and activations. Recently, researchers have found that
applying rotation matrices to networks can effectively reduce outliers without increasing
the complexity of LLMs. QuIP Chee et al. (2024) is the first to suggest that quantization
can benefit from the incoherence between weight and Hessian matrices. It employed
randomized orthogonal matrices generated by Kronecker product to enhance their inco-
herence. QuIP# (Tseng et al., 2024) replaces the randomized orthogonal matrices with
randomized Hadamard matrices, which are faster and possess better theoretical properties.
QuaRot (Ashkboos et al., 2024b) is the first work to apply rotational invariance (Ashk-
boos et al., 2024a) for model quantization. QuaRot finds that randomized Hadamard
transformations yield better results compared to randomized orthogonal transformations.
SpinQuant (Liu et al., 2024) and OSTQuant (Hu et al., 2025) further extends the rotation
matrices to a trainable space and applied Cayley optimization (Li et al., 2020) to refine them,
achieving significant improvements across diverse datasets.

3 Rotational Invariance, Quantization and Massive Activation

3.1 Rotational Invariance

First, we briefly introduce rotational invariance in LLMs, using the structure of LLaMA as
an example. We assume that the α in the RMSNorm has been fused into the follow linear
layers’ weights, including Wq, Wk, Wv, Wup and Wgate and RMSNorm applies to each row of
the activations X as Xi,: → Xi,:/ ↑Xi,:↑. If R1 is an rotation matrix, we have the commutation
property RMSNorm(XR1) = RMSNorm (X) R1 (Ashkboos et al., 2024a). This property
implies that multiplying the input of RMSNorm by R1 is equivalent to multiplying the
RMSNorm output by R1.
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Figure 2: Comparison of 4-bit activation quantization error E(·) for each token with NR,
RO and RH for (a) LLaMA-7B, (b) LLaMA2-7B, (c) LLaMA2-13B and (d) LLaMA3-8B. The
tokens are from model.layers.6.post attention layernorm. Best viewed in color.

Figure 3: Comparison of 2D 4-bit quantization errors for tokens with NR, RO, RH and
DFRot for LLaMA3-8B from Figure 2.

Figure 4: Comparison of 4-bit quantization error for the token with massive activation with
NR, RO, RH and DFRot for LLaMA3-8B from Figure 2.

As shown in Figure 1, to remove outliers in the input activations, a rotation matrix R1
is applied to the embedding layer Wembedding, resulting in a new input activation X1R1.
According to the above, we can know once we transform Wq, Wk, Wv and Wo in the Multi-
Head Attention (MHA) to RT

1 Wq, RT

1 Wk, RT

1 Wv and WoR1, the hidden feature within the
MHA will remain unchanged, and the original output feature Y1 will become Y1R1. The
following Feed-Forward Network’s input X2 from the residual connection will be modified
to (X1 + Y1)R1 = X2R1. If we further transform Wup, Wgate and Wdown to RT

1 Wup, RT

1 Wgate

and WdownR1, the hidden feature within the FFN will also remain unchanged, and the output
feature X3 will be modified to (X2 + Y2)R1 = X3R1. Based on mathematical induction, we
can get that XnR1 + YnR1 = (Xn + Yn)R1 = Xn+1R1 for the n-th module. To this end, by
transforming Wlm head into RT

1 Wlm head, the network output will remain unchanged.

There is also rotational invariance within the block. For MHA, we can insert head-wise
rotation matrices R2 and RT

2 for Wv and Wo and R3 for Query and Key after RoPE. For
FFN, we can insert R4 and RT

4 between Swish and Wdown. These approaches can further
eliminate outliers and reduce quantization error while keeping the block output unchanged.
In this paper, we only discuss R1. For R2, R3, and R4, we follow the QuaRot (Ashkboos
et al., 2024b) settings and use Hadamard matrices.

3.2 Why the Randomized Hadamard is better than Randomized Orthogonal?

Based on the computational invariance described in Section 3.1, it is evident that the choice
of rotation matrices is critical for ensuring the accuracy performance of the quantized
model. Therefore, a natural question arises: What type of rotation matrix offers the most
advantageous properties?
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Method LLaMA-7B LLaMA2-7B LLaMA2-13B LLaMA3-8B
4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16

GPTQ NaN NaN NaN NaN NaN NaN Inf Inf 6.01 Inf Inf 7.29
(RO) QuaRot 6.68 6.62 5.80 7.96 7.71 5.61 6.00 5.92 4.99 10.54 10.15 6.52
(RO) QuaRot.FP16() 6.30 6.27 - 6.17 6.10 - 5.38 5.34 - 7.83 7.68 -
(RH) QuaRot 6.37 6.33 5.81 6.27 6.20 5.61 5.51 5.46 5.01 8.20 8.02 6.52
(RH) QuaRot.FP16() 6.30 6.28 - 6.17 6.10 - 5.40 5.37 - 7.82 7.67 -

Table 1: WikiText-2 perplexity (↓) results for RO and RH for LLaMA models. The 4-4-4,
4-4-16, 4-8-16 represent W4A4KV4, W4A4KV16, W4A8KV16 respectively. We show the
failed GPTQ using NaN and the perplexity results>100 by Inf. QuaRot.FP16() denotes
retaining tokens with massive activations as FP16.

We begin by focusing on RO and RH, as both QuaRot (Ashkboos et al., 2024b) and Spin-
Quant (Liu et al., 2024) have demonstrate that RH delivers substantial improvements over
RO in LLMs. We conducted experiments by applying RO and RH to the LLaMA models
respectively, followed by weight quantization using GPTQ under various quantization
settings. The results are shown in Table 1. Benefiting from the outlier elimination through
rotational invariance, we find that for dynamical token-wise 8-bit activation quantization,
both RO and RH lead to significant performance improvements compared to standard
quantization. Additionally, no substantial performance difference is observed between the
two transformations. However, under 4-bit dynamical token-wise activation quantization,
RH significantly outperforms RO.

To investigate the performance differences between RH and RO under 4-bit activation
setting, we plot the corresponding quantization error after applying 4-bit quantization to
the multiple tokens. We also display the quantization error for the baseline setting where
quantization is applied without rotating the activation to better understand the impact of
using the rotation matrix. As shown in Figure 2, compared to the no rotation (NR), both RO
and RH effectively reduce the quantization error for most tokens across different models.
While RH slightly lowers the quantization error, the difference between the two methods is
minimal for the majority of tokens. This leads to the question: What explains the significant
difference in PPL during quantization when their quantization errors are so similar?

To answer this question, we turn our attention to massive activation (Sun et al., 2024), a rare
but significant feature in LLMs. As shown in Figure 2, the red points represent quantization
error for the tokens with massive activation. While most tokens show large quantization
errors under NR, these special tokens display significantly smaller errors, which can be
observed from Figure 3. It is normal since each token has a fixed L2 norm after RMSNorm
processing, as shown in Figure 4(a), tokens with massive activation naturally exhibit smaller
quantization errors when quantized to 4-bit. Figure 4 presents the quantization result for
the token with massive activation after applying NR, RO, and RH. Surprisingly, the rotation
operations do not significantly reduce quantization errors for these tokens. In fact, compared
to NR, RO greatly increases their quantization error, while RH only marginally reduces it.
This leads us to question whether tokens with massive activation are the primary cause
of the significant accuracy discrepancies between RH and RO.

To investigate this further, we build upon QuaRot by retaining tokens with massive activa-
tions in FP16 format for both RO and RH, while applying 4-bit quantization to the remaining
input tokens, denoted as (RO) QuaRot.FP16() and (RH) QuaRot.FP16(). As shown in Table 1,
for all LLaMA models, the performance gap between RH QuaRot and RO QuaRot is totally
disappeared. It is so surprising that by simply retaining these extremely few tokens (often
less than one-thousandth) as FP16, we can completely eliminate the performance difference
between RO and RH. Therefore, we can make the following conclusion:

Why the Randomized Hadamard is better than Randomized Orthogonal?

RH = RO + Tokens with Massive Activations: RH is better than RO because it per-
forms more effectively when reducing the quantization error for tokens with massive
activations in 4-bit activation quantization.
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3.3 Optimization Objectives and Calibration Data Selection

As mentioned above, although retaining tokens with massive activations as high-precision
floating-point numbers can significantly enhance model accuracy, this approach is akin to a
token-level version of LLM.int8(). It still requires fine-grained mixed-precision computations
during the process, which will introduce additional system level optimization. Therefore,
in this paper, we focus on W4A4 quantization to maintain simplicity and efficiency in the
computation process. We consider a loss function of the following form:

L(R1, gx) = Ex

[
↑xR1 ↔Q(xR1, gx)↑2

2

]
, (1)

where x ↗ R1↘C is the token vector from a calibration dataset Xcal ↗ RL↘C. C is the hidden
size and L is the number of tokens. R1 ↗ RC↘C satisfies R1RT

1 = I, gx is the quantization
parameters and Q(x, gx) ↗ R1↘C is the quantization of the x. The expectation E [·] is taken
over the token distribution. For the ease of analysis, we use the mean squared error ↑ · ↑2.

Meanwhile, we introduce our data selection principle. We denote the calibration dataset as
X, the tokens with massive activations as Xm, and the remaining tokens as X \ Xm:

L(R1, gx) = Ex↗Xcal\Xm

[
↑xR1 ↔Q(xR1, gx)↑2

2

]
+ γ2Ex↗Xm

[
↑xR1 ↔Q(xR1, gx)↑2

2

]
. (2)

During calibration, we apply a weighted loss to prioritize the quantization error on tokens
with massive activations, with γ representing the weight.

The motivation behind this principle stems from the observations in Table 1. Since Xm is the
key factor contributing to the performance gap between RO and RH, simply optimizing R1
via Eq. 1 fails to specifically target Xm. On the other hand, compared to the NR in Table 1, RO
also significantly improves performance, indicating that reducing the outliers on Xcal \ Xm

can enhance quantization performance, optimizing only for Xm has the risk of increasing
the quantization error for Xcal \ Xm, ultimately degrading the model’s performance. Hence,
it is crucial to optimize both Xm and Xcal \ Xm. Naturally, we can regard this a long-tail
optimization problem, where Xm represents the long-tail but important data. Using a
weighted approach to optimize the quantization loss is a simple yet highly effective method.
Ablation studies in Section 4.2 further demonstrate the advantages of this strategy.

3.4 Solution Methods

Optimizing R1 is a challenging task. Since R1 influences every MHA and FFN in the net-
work, adjusting the activation distribution in one layer impacts the quantization results
across all layers. This makes it difficult to optimize layer by layer or block by block (Shao
et al., 2023; Wei et al., 2023). A straightforward approach is to use training methods for
quantization-aware fine-tuning of the rotation matrix across the entire network (Liu et al.,
2024). Although it does not require retaining the gradients of the weights or the corre-
sponding optimizer states, it still demands substantial computational resources during the
quantization process.

In this paper, we focus on improving the effectiveness of rotation matrices in mitigating
outliers and massive activation. Intuitively, we hypothesize that a rotation matrix that
minimizes quantization error will lead to better performance. Drawing inspiration from
Simsiam (Chen & He, 2021), we propose to regard quantization representation Q(xR1, g) as
cluster centroids ηx. In the context, optimizing R1 and g is equivalent to optimizing R1 and
ηx, which can be viewed as an implementation of an Expectation-Maximization (EM)-like
algorithm, as shown in the following equation:

minR1,ηx L(R1, ηx) = Ex↗Xcal\Xm

[
↑xR1 ↔ ηx↑2

2

]
+ γ2Ex↗Xcal

[
↑xR1 ↔ ηx↑2

2

]

= Ex↗X̂cal

[
↑xR1 ↔ ηx↑2

2

]
,

(3)

where ηx = Q(xR1, g) and X̂cal = {x|x ↗ x ↗ Xcal \ Xm}≃ {γx|x ↗ Xm}. This formulation
is analogous to k-means clustering (Macqueen, 1967), and R1 and ηx act like the kernel
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function and cluster centroids, respectively. Similar to k-means clustering, the problem
described in Eq 3 can be approached using an alternating algorithm, where one set of
variables is fixed while solving for the other. Formally, we can alternate between solving
these two subproblems:

ηt
x → arg min

ηx
L
(

Rt↔1
1 , ηx

)
; Rt

1 → arg min
R1

L
(

R1, ηt
x
)

(4)

where t represents the iteration index of the alternating rounds, and ηt
x and Rt

1 denote the
values of ηx and R1 at round t.

Solving for the cluster centroids ηx. The set of quantization parameters gx further contains
the quantization scale sx and zero point zx. In this paper, we adopt dynamic asymmetric
per-token quantization for activations. Therefore, we can independently determine the
optimal quantization scheme for solving sx and zx for each xR1:

ηx = Qg(xR1, s
t
x, z

t
x) = clamp

(⌊
xR1
sx

⌉
+ zx, 0, 2N ↔ 1

)
,

where sx =
max(xR1)↔ min(xR1)

2N ↔ 1
, zx = ↔

⌊
min(xR1)

sx

⌉ (5)

where ⇐·⇒ indicates round operation, N is the bitwidth.

Solving for R1. The right side od Eq 4 is well-known as Procrustes problem (Mulaik, 2009).
which involves finding the optimal rotation matrix R1 that best aligns two sets of points,
minimizing the Frobenius norm of their difference. The solution to this problem can be
obtained through Singular Value Decomposition (SVD). Specifically, given input matrices X
and its quantized version Q(X, g), the optimal R1 can be found:

R1 = UV T , where U, Σ, V T = SVD(XTQ(X, gx)). (6)

where we treat the quantization parameters gt as a constant.

One-step optimization. To find an improved rotation matrix R1 and quantization parame-
ters gx, we perform the iterative process shown in Eq 4. Specifically, a calibration set Xcal is
randomly sampled from X, the iterative process can be specified as:

s
t
x, z

t
x → arg minsx ,zx ∑x↗Xcal

[∥∥∥xRt↔1
1 ↔Qs,z(xRt↔1

1 ))
∥∥∥

2

2

]
, ηt

x → Qst ,zt(xRt↔1
1 ), (7)

then the resulting quantization parameters will be used to produce the rotation matrix:

Rt

1 → arg min
R1

∑x↗Xcal

[∥∥xR1 ↔ ηt
x
∥∥2

2

]
(8)

The detailed algorithm is provided in Algorithm 1.

4 Experiments

Experiment settings. We implemented DFRot based on QuaRot. In this paper, to sim-
plify the problem, we apply dynamic asymmetric per-token quantization for activation
values. The KV-cache is quantized using asymmetric quantization with a group size of 128.
GPTQ (Frantar et al., 2022) are used for weight with per-channel symmetric quantization,
where a linear search for the clipping ratio is applied to minimize squared error. We use
a sample with sequence length of 2048 from WikiText-2 (Merity et al., 2016) training set
to genrate calibration dataset Xcal , initialize the rotation matrix R1 with RH, and optimize
it for 100 iterations. After obtaining the optimized rotation matrix R1, we apply it to the
corresponding model and achieve rotational invariance. We use 128 samples each with a
sequence length of 2048, as the calibration dataset for GPTQ quantization.
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LLaMA3-8B LLaMA3-70B LLaMA2-7B LLaMA2-13B LLaMA2-70B LLaMA-7B LLaMA-13B LLaMA-30B
#Bits Method 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki

W-A-KV Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓) Avg.(⇑) (↓)
16-16-16 FloatingPoint 68.09 6.14 73.81 2.86 65.21 5.47 67.61 4.88 71.59 3.32 64.48 5.68 66.67 5.09 70.00 4.10

4-4-16

RTN 33.42 6e2 31.21 8e3 32.44 nan 30.86 8e3 30.90 7e4 32.51 7e3 31.63 3e4 31.57 2e3
SmoothQuant 33.04 1e3 34.67 2e2 32.13 nan 34.26 1e3 35.86 3e2 34.42 3e2 33.29 6e2 34.64 1e3
GPTQ 32.98 5e2 31.47 4e4 32.72 nan 30.11 4e3 30.86 nan 32.12 1e3 31.51 3e3 30.88 2e3
QuaRot 61.86 8.11 68.25 5.92 61.63 6.17 64.66 5.45 69.96 3.89 61.65 6.33 64.83 5.57 67.79 4.74
DFRot 63.01 7.78 69.82 4.97 62.42 6.13 65.34 5.39 69.16 3.99 62.25 6.30 64.47 5.58 68.06 4.78
SpinQuant⇓ 64.11 7.28 66.99 6.10 57.37 6.78 63.23 5.24 70.58 3.68 61.82 6.08 64.59 5.36 68.08 4.53
OSTQuant⇓ 65.14 7.24 72.21 3.97 63.90 5.60 66.24 5.14 70.92 3.57 62.72 6.04 65.80 5.40 68.52 4.43

4-4-4

RTN 33.18 7e2 30.82 8e3 32.67 nan 30.93 7e3 31.73 7e4 32.87 1e4 31.33 3e4 31.64 2e3
SmoothQuant 32.96 1e3 33.76 3e2 32.12 nan 33.36 1e3 35.54 3e2 33.32 3e2 33.28 5e2 34.65 1e3
GPTQ 33.71 6e2 31.20 4e4 33.52 nan 27.85 5e3 31.09 nan 31.80 2e3 30.63 3e3 31.07 2e3
Omniquant 32.33 4e2 - - 48.40 14.26 50.35 12.30 - - 48.46 11.26 45.63 10.87 45.04 12.35
QuaRot 61.38 8.28 68.29 6.02 60.81 6.25 64.44 5.49 69.96 3.92 61.21 6.37 64.68 5.59 67.92 4.77
DFRot 62.94 7.91 69.62 5.03 61.80 6.25 64.95 5.43 68.78 4.02 61.84 6.36 64.26 5.62 67.93 4.81
SpinQuant⇓ 64.10 7.35 66.31 6.24 62.01 5.96 64.13 5.74 70.57 3.61 61.32 6.12 64.95 5.39 68.14 4.55
OSTQuant⇓ 65.37 7.29 71.69 4.01 63.18 5.91 65.41 5.25 70.84 3.59 62.55 6.07 65.43 5.40 68.20 4.42

Table 2: Comparison of averaged accuracy on nine Zero-Shot tasks and perplexity on
WikiText2. Results for SmoothQuant, GPTQ, OmniQuant, AWQ, SpinQuant and OSTQuant
are from the OSTQuant paper, and QuaRot’s results from the official code. ⇓ denotes the
methods that use the quantization-aware training to optimize R1.

4.1 Main results

Language Generation Task. We evaluate DFRot on a language generation task and com-
pare it with SmoothQuant (Xiao et al., 2023), GPTQ (Frantar et al., 2022), OmniQuant (Shao
et al., 2023), AWQ (Lin et al., 2024a), SpinQuant (Liu et al., 2024) and OSTQuant (Hu
et al., 2025). Table 2 shows the perplexity of LLaMA models. As shown, compared to
QuaRot, DFRot achieves improvements in most cases. For example, DFRot achieves the
most significant improvement on the LLaMA3-8B model with W4A4KV4 and W4A4KV16,
outperforming QuaRot by 0.25 and 0.21, respectively. It is worth noting that DFRot has
achieved near 1.00 PPL improvement on LLaMA3-70B, a model known for its challenging
quantization performance, even surpassing SpinQuant, which finetunes R1 on wikitext
through quantization-aware-training.

Similar to QuaRot, DFRot does not require any retraining process and only needs a sample
to optimize the rotation matrix. On a single NVIDIA A100 80G GPU, it only takes an extra
8 minutes for LLaMA-7B & LLaMA2-7B & LLaMA3-8B and 20 minutes for LLaMA2-13B,
resulting in minimal overhead. Even for the 70B models, the additional time is less than 90
minutes, which is also acceptable. It demonstrates that DFRot has wide applicability and
can serve as a cost-effective post-training method to enhance the quantization performance
of rotated LLMs. Although DFRot does not achieve the best performance compared to
the state-of-the-art methods, like OSTQuant, we believe DFRot also help community to
understand the fundamental performance gap between RO and RH.

Zero-Shot Tasks. We also evaluate DFRot on the following nine important zero-shot
tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2021), OpenBookQA (Mihaylov et al., 2018), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), Arc (Easy and Challenge) (Clark et al., 2018) and LAMBADA (Radford et al.,
2019). We use lm eval==0.4.5 (Gao et al., 2024) or our experiments. Table 2 shows the
average score of DFRot on the above tasks. As can be seen, DFRot consistently achieves
improvements compared to QuaRot across all tasks. For example, DFRot achieves a 1.56%
accuracy improvement compared to QuaRot on the LLaMA3-8B model with W4A4KV4
quantization settings.

4.2 Ablation studies

Choice of γ. To further understand the effect of hyperparameters in DFRot, we conducted
an ablation study on Wikitext-2 PPL to investigate the impact of different γ settings for
W4A4KV16. As seen in Figure 5, when γ ranges between 50 and 200, DFRot achieves signif-
icant improvements across various LLaMA models using RH. Notably, on the LLaMA3-8B
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(a) LLaMA-7B (b) LLaMA2-7B (c) LLaMA2-13B (d) LLaMA3-8B
Figure 5: Comparison of WikiText-2 perplexity results under different γ for W4A4KV16.
R1 is initialized with RH.

(a) LLaMA-7B (b) LLaMA2-7B (c) LLaMA2-13B (d) LLaMA3-8B

Figure 6: Comparison of WikiText-2 perplexity results under different γ for W4A4KV16. R1
is initialized with RO.
model, which is known for its quantization performance sensitiveness to massive activa-
tions from Table 1, we observed a PPL improvement of over 0.2 in Figure 5(d). If we set
γ = 1 and treat Xm and Xcal \ Xm equally to minimize their quantization errors, it may
reduce the quantization loss of Xcal \ Xm but increase the quantization loss of Xm, ulti-
mately resulting in a performance decline on the LLaMA2-13B. Conversely, if we set γ ⇔ ∞
and only optimize the quantization error for Xm, it will increase the quantization error of
Xcal \ Xm, resulting in an accuracy drop across the LLaMA-7B, LLaMA2-7B, LLaMA2-13B
and LLaMA3-8B models.

Initialize with Randomized Orthogonal. We conducted an ablation to study the effective-
ness of DFRot when R1 initialized with RO. We keep the same experimental settings as in
the study with RH and optimize the rotation matrix with different γ values. As shown in
Figure 6, our method achieves considerable improvements in RO scenarios compared to
using RH for initialization. Meanwhile, it is more effective for LLM whose quantization pe-
formance is more sensitive to the massive activations, such as LLaMA3-8B and LLaMA3-70B.
However, due to the exceptional performance of RH, initialization and optimization using
RH always yield superior final results compared to those obtained with RO. Therefore, we
recommend using RH for initialization in practice to achieve better performance.

Model Sample1
(64↘2048)

Sample2
(64↘2048)

Sample3
(64↘2048)

Sample4
(64↘2048)

Sample5
(64↘2048)

LLaMA3-8B 7.78 7.76 7.79 7.74 7.76
LLaMA2-7B 6.13 6.12 6.15 6.11 6.14

Model Sample1
(48↘2048)

Sample1
(32↘2048)

Sample1
(24↘2048)

Sample1
(16↘2048)

Sample1
(8↘2048)

LLaMA3-8B 7.78 7.78 7.77 7.80 7.86
LLaMA2-7B 6.14 6.15 6.15 6.12 6.20

Table 3: Comparison of WikiText-2 perplexity results under different calibration samples for
W4A4KV16.

4.3 Analysis of Calibration Set Sensitivity

We performed ablation studies W4A4KV16 on LLaMA3-8B and LLaMA2-7B along two
dimensions: the choice of calibration samples and the num of calibration tokens and evaluate
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results on WikiText. Samples are all sampled from WikiText-2 train. In selecting the number
of tokens, we utilize the inputs to the first N transformer blocks as the calibration data
source and demonstrate results in Table 3. For example, when 48↘2048 tokens are selected,
the inputs to transformer blocks 0 to 23 are used for calibration. Our results indicate that,
for tuning the rotation matrices in LLaMA3-8B and LLaMA2-7B, using 16↘2048 tokens is
often sufficient. We believe that these reasons may all be the causes for the optimization of
DFRot being relatively insensitive to the number of tokens in the calibration dataset:

1. These special tokens will appear in relatively shallow network layers (Sun et al.,
2024), therefore, a small number of layers are also sufficient to capture these tokens.

2. For a model, tokens with massive activations in LLMs tend to exhibit only a few
similar data distributions because these tokens are often produced by out proj or
down proj layers with large weights (Yu et al., 2024).

3. GPTQ will use 128 samples with a length of 2048 to calibrate the weights, which
reduces the impact of the sample size during rotation matrix calibration.

4.4 Results on MMLU

W-A-KV Methods LLaMA2-7B LLaMA3-8B QWen2-7B Mistral-7B-v0.3

16-16-16 FP 41.85 62.23 69.47 59.11
4-4-16 QuaRot 34.83 51.43 62.67 52.82
4-4-16 DFRot 35.54 51.68 63.40 53.38

Table 4: Comparison of MMLU results under different methods.

We compare DFRot with QuaRot with W4A4KV16 quantization configuration with different
models. As seen in Table 4, even though rotation matrix R1 is refined with WikiText-2
dataset, DFRot also outperforms QuaRot in all models. It indicates that DFRot, which
refines R1 by optimized long tailed quantization error, can be seen as a general method. It
is also worth noting that even though DFRot achieves slight improvement with WikiText2
for LLaMA2-7B, it achieves 0.71% improvement with MMLU, which is significant. On
the contrary, for the LLaMA3-8B, while DFRot achieves significant improvement with
WikiText2, it only achieves 0.25% improvement with MMLU, which is slight. To sum
up, we can know that the PPL with WikiText2 can not been seen as a good indicator of
the model downstream performance. In the future, we will study how to design more
robust quantization algorithms for downstream tasks to further enhance the capabilities of
quantized models in downstream tasks.

5 Conclusion

Eliminating outliers in LLMs through rotational invariance can significantly improve model
quantization accuracy. In this paper, we find that in the context of 4-bit activation quan-
tization, the fundamental reason for the effectiveness difference between RO and RH is
their performance on tokens with massive activations. Specifically, randomized Hadamard
transformations perform better on these tokens than random Orthogonal transformation.
Based on the observation that tokens with massive activations are rare and important in
LLMs, we treat the problem as a long-tail optimization and construct a simple yet effective
weighted quantization loss function to balance the importance of tokens. Furthermore, by
alternately employing orthogonal Procrustes transformations to refine the rotation matrix
R1 and optimizing quantization parameters for X, our method, named DFRot, enhances the
Rotated LLMs by achieving Dual Free, including Outlier-Free and Massive Activation-Free.
It is worth noting that DFRot significantly improves model accuracy in 4-bit activation
quantization with just a single data sample, achieving PPL improvements of 0.98 and 0.95
on W4A4KV4 and W4A4KV16, respectively, for the LLaMA3-70B, which is notable for its
quantization challenge.
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